
The Space Cost of Lazy 
Reference Counting

Hans-J. Boehm

Some figures are taken from the corresponding paper in the Proceedings of the 2004 POPL Symposium, and are 
reproduced by permission of ACM.



Automatic Memory Management

� Tracing garbage collection
� Periodically trace through all live objects.
� Reclaim untraced objects.
� Common in language runtimes.

� Reference Counting
� Associate count of incoming references with objects.
� Reclaim object when count reaches zero.
� Common in OS file systems, some C++ libraries.
� Used occasionally in language runtimes.



Tradeoffs

� Classic reference count disadvantages:
� Leaks cyclic garbage.
� Expensive pointer assignments, (threads!)

� Classic reference count advantages:
� Faster reuse: better cache behavior.
� Synchronous/deterministic finalization.
� Possibly better memory utilization.
� Supports copy avoidance.
� Avoids GC pauses?



Classic Reference Counting
� When creating reference to p:

incr(p) { count(p)++; }
� When deleting a reference to p:

decr(p) {
if (--count(p) == 0) {
invoke decr on embedded references;
free(p);

}
}

� Pointer assignment requires incr(new) followed by 
decr(old).

� Count update/test must be atomic.
� Incr/decr usually inserted automatically.



Pauses avoided
big = make_huge_linked_tree();
do forever {

temp = new foo();
}

� Each implied incr()/decr() takes constant time.
� No significant pauses during execution.
� Simple tracing GC would trace big repeatedly, 

introducing pauses.



�but only sometimes
do forever {

tmp = make_huge_linked_tree();
...
big = tmp;
...

}

� �big = tmp� assignment invokes decr() on old tree.
� Count becomes zero.
� Decr() recurses, deallocating and touching entire tree.
� Effectively a significant pause during assignment.



Tracing vs. ref. counting pauses
� Simple tracing GC stops entire process.
� Classic reference counting stops thread

� �which may hold critical lock.
� If deallocation time were predictable, we could 

easily deallocate manually.
� Pauses are effectively unpredictable.

� Manual deallocation also adds �pauses�.
� They are usually predictable.

� Recursive decr() calls need atomicity.
� Usually more sensitive to threading.



Worst case �pause� times for GCBench
(msecs, P4 2.0GHz, gcc, Linux)

Reference counted Traced



Lazy deletion

� Decr(p):
if (--count(p) == 0)

add p to to-be-freed;
� Before each allocation:

q = element of to-be-freed (if any);
invoke decr on embedded references;
free(q);

� Each allocation does one deallocation.



Lazy deletion (contd.)

� Dates back to 1963 paper (Weizenbaum).
� Works well for fixed size objects.
� But for multiple object sizes:

� No sufficiently large object may be free.
� Sufficiently large objects may be in to-be-

freed set.
� We may require additional heap size to satisfy 

allocations.



Hidden space



How much space overhead?

� Ignore fragmentation cost.
� Objects between smin and smax in size.
� We measure space overhead as:

max size of allocated objects (incl. to-be-freed)
max size of live objects

� Fragmentation adds at most a factor of 
O(log(smax/smin)) to total heap size. 
(Robson, 1971).



Space overhead (contd.)

� Lazy reference counting cannot increase 
the number of allocated objects above 
maximum number of live objects.

� Hence
max allocated size smax

max live size smin
�



Main result

� The preceding bound is asymptotically 
optimal.

� This holds for a large class of variants of 
the preceding algorithm.

� Smooth tradeoff:
allocation deallocates m items è
bound reduced by factor of m



Observations

� It may take a heap of size �(N²) to 
accommodate N live bytes.

� If an n byte allocation deallocates at least 
n bytes, the max number of allocated 
bytes can�t exceed the the max number of 
live bytes à only fragmentation overhead.
� May require smax/smin deallocations for a 

single allocation.



More precise statement
� Assuming that:

� smin and smax satisfy some assumptions.
� Affect only constants.

� We have a �lookahead-free reference count 
implementation�.

� Every sequence of 1 allocation, 2 incr(), and 2 decr() 
calls deallocate � m objects.

� There exists a �program� with no more than N
referenced (live) bytes, such that:
� The total number of allocated bytes is at least

N smax
2 m smin



Proof illustration

� We construct a program.
� Real proof adapts to deallocation order of 

reference counting algorithm.
� Here we assume instead:

� m = 3
� each allocation deallocates 3 to-be-freed items.

� to-be-freed set is managed in LIFO order.



Step 1 � Allocate N/2 bytes in small objects

�
start

end

N
6 smin

columns



Step 2 � Allocate large object & advance

�
start

end

min(smax,N/2) bytes



Step 3 � Repeat

�
start

end



Final State

�
start

end



Conclusions

� In a reference counted system, either:
� There may be pauses,
� Allocation takes time proportional to object 

size (as with tracing), or
� It incurs a probably unacceptable (though 

finite) worst-case space overhead.
� The fixed size case is not an anomaly:

� There is a smooth tradeoff with smax/smin.


