Destructors, Finalizers, and
Synchronization

Hans-J. Boehm
HP Laboratories

Hans.Boehm@hp.com




Object cleanup

-C++ destructors
* Executed synchronously at specific program point.
* Convenient notation.
*Used to manage cleanup after exceptions.
* Often used pervasively in C++.
*Canonical example:

{
scoped_lock sl(L);

do _something();

}



Object Cleanup (2)

-Java Finalization (a.k.a. C# destructors)

*Leverages garbage collector for non-memory
resources.

*Cleanup code is executed for otherwise unreachable
objects.

*Rarely used, but very hard to avoid.

*Canonical use:

-

Explicitly
deallocated

Collectable Uncollectable
Heap Heap



Implementing finalization

*(Small) subset of objects Fis
finalization-enabled.

*Runtime keeps a data structure representing F.
* After GC, untraced objects in F are finalizable.
*These objects are enqueued for finalization.

*Details depend on finalizer ordering:
*May not want to finalize objects reachable from
finalization-enabled objects (Modula-3).
*May need to prevent collection of objects
accessed during finalization (Java, C#).
*No significant impact on performance.



Overview (rest of talk):

* Paper discusses
*Example uses of finalization.
*Observations about programming with finalizers.
*Concurrency issues.
*Language design issues.
*Why finalizer ordering does and doesn't matter.

*Talk instead looks at specific "myths".

*Many misunderstandings.
*Complexity is largely self-inflicted, not inherent.

* Assume Java unless otherwise stated.



Myth #1:

Java 2 Black Book (introductory Java book):

[Dubious discussion of circular references.]

When an object is being "garbage collected" ... , the
garbage collector will call a method named finalize in the
object, if it exists. In this method, you can execute cleanup
code,

and it's often a good idea to get rid of any references to
other objects that the current object has in order to
eliminate the possibility of circular references ...



Really 3 myths?

Cyclic garbage is hard to collect.

*Applies at most to reference counting.
* Almost all JVMs use tracing GC.

Finalizers can help the collector.

*The collector needs to determine that the object is
unreachable to run the finalizers.
*Cycles may affect finalizability, but not in Java.

Finalization Is cheap
*Finalization-enabling an object usually increases
allocation and collection cost, perhaps by 3x.



Myth #2: (usually implicit)

Finalizers run only after all other method calls

on the object have completed.

*Java finalizers may run run when the object can no
longer "be accessed in any potential continuing

computation ..." This may occur with a running method,
e.g.:
class X { X: Y:
Y mine; —
// mine is not shared.
public foo () |
- bar()
mine.bar () ;

|



Myth #3:

Finalizers should avoid synchronization.

-Useful finalizers update external state.
External state Is typically shared.
‘Needs to synchronize (perhaps implicitly).
Finalizers introduce concurrency (stay tuned
).
‘Finalizers in single-threaded Java/C# code
may need to lock



Myth #4:

Finalizers are crippled because they may be
run too late, instead of immediately when an
object becomes unreachable.

*Running finalizers "immediately" is not meaningful unless
they are run from the thread overwriting the last pointer.
*Unlike the destructor case, it is not practically predictable
when finalizers will be run. (If it were, we wouldn't need a

garbage collector.)
*The thread overwriting the last pointer may already hold
lock needed by finalizer.
==> deadlock (or worse)



-Garbage collectors should run finalizers from
a separate thread.

*Tracing collectors should never run finalizers from

allocator.
*Unfortunately version 1 usually does.
*What about System.runFinalization()?

A reference count decrement should not

trigger finalization calls.

*Unfortunately, standard reference count libraries
usually do.

*Workarounds (explicit queueing) may be possible.



Late finalization Is necessary, but
early finalization may be a problem:

*Object is finalized when the collector discovers it to be
unreachable.

*One of its fields may still be in a register.

*If that field is a handle / file descriptor:
*finalizer may close it while being accessed.
*Or not?

In my view:
*Java / C# "reachability" are underspecified.
*Not just in this respect (see also myth 8).
* Java objects appear to be reachable while locked.
==> synchronize accesses to finalizable objects.



Myth #5

All finalizers should be run before process exit
to ensure proper cleanup.

-Can't be done safely.

* Must run finalizers on reachable objects.

*Any finalizer may be the last one to be run.

* All other objects in the system have been finalized at
that point.

*Cannot safely stop all threads beforehand.

*Will finalize objects being accessed by daemon threads.



Myth #6:

Finalizers cannot ensure reliable cleanup of

e.g. temporary files.
*Keep state needing cleanup in a separate array S.
*Run explicit cleanup routine over S at exit.




Myth #7:

Finalizers cannot manage scarce resources,
because the collector may run too infrequently.

Resource allocator can run GC and
finalization, but:

- This requires careful attention to deadlocks.
-Thread calling allocator may hold lock.

-Remember finalizer dependencies!
* Other finalizers need to run, too.

*Allocators of scarce resources should not
be called with locks held?



Myth #8:

If A Is reachable and points to B, then B Is
reachable.

-Usually true for standard implementations.
- Not guaranteed by Java spec.



Conclusions

Finalizers:
eare rarely needed.
*may need thousands of lines of code to avoid.
eare inherently asynchronous.
*clean up objects of unpredictable lifetime.
eare usually misunderstood.

Destructors:

eare used pervasively.

*can be easily (but inconveniently) avoided.
eare synchronous.

clean up objects of predictable lifetime.
eare reasonably well understood.



