
Performance Implications of
Fence-Based Memory Models

Hans-J. Boehm

HP Labs

Simplified mainstream (Java, C++)
memory models

• We distinguish synchronization actions
– lock acquire/release, atomic operations, barriers, …

• Synchronization operation s1 synchronizes with
s2 in another thread if s1 writes a value
observed/acted on by s2. e.g.
– l.unlock() synchronizes with next l.lock()

– atomic store synchronizes with corr. atomic load

• The happens-before relation is the transitive
closure of the union of

synchronizes-with U intra-thread-program-order

Happens-before example

l.lock();

x = 1;

l.unlock();

l.lock();

x = 2;

l.unlock();

Thread 1: Thread 2:

x = 1 program-ordered before l.unlock()
synchronizes with l.lock()
program-ordered before x = 2

Therefore x = 1 happens before x = 2

Conditions on a valid execution

• Synchronization operations occur in a total order, subject to
some constraints.
– See paper for details and references.

• Happens-before must be acyclic (irreflexive).
• Every data load must see a store that happens before it.
• If two accesses to the same data are not ordered by

happens-before, and one of them is a write, we have a data
race.

• Data-race-free executions are sequentially consistent.
– For the core language.

• A data race results in
– undefined behavior (C++, C, Ada) or
– poorly defined (Java) behavior.

Absence of races allows reordering

• Independent data operations can be reordered.
– If another thread could observe intermediate state

• It would have to access y between two statements.
• It could have exhibited a data race in original code.

• Movement into critical section (roach motel reordering) is
unobservable.

• See, for example, Jaroslav Ševčík’s work for details.

l.lock();

x = 1;

l.unlock();

r1 = y;

l.lock();

r1 = y;

x = 1;

l.unlock();

Roach motel reordering supports
efficient lock implementation

• Some compiler impact (Laura Effinger-
Dean’s talk helps you characterize this)

• Allows less expensive fences in
synchronization constructs:
– TSO hardware memory model (X86,

SPARC):
• Stores are queued before becoming visible;

no other visible reordering.
• No need to flush queue on unlock(); later

reads can become visible before unlock()

• Nearly factor of 2 for uncontended spin-
locks.

– Avoids full (expensive!) fences on
PowerPC, Itanium, and the like.

P1 P2

Memory

loads
stores

unlock

OpenMP 3.0 fence-based memory
model, roughly

• Memory ordering is imposed by flush
directives (fences).

• flush directives are executed in a single
total order. Each flush synchronizes with
the next one.

• lock/unlock implicitly include flush.

• These are the only synchronizes-with
relationships.

• Otherwise, as before.

OpenMP 3.0 properties, so far

• Mainstream model guarantees sequential
consistency for data-race-free programs.

• OpenMP model adds synchronizes-with and
happens-before constraints.

– which are clearly already satisfied by a
sequentially consistent execution

 so far, no real change.

The complication: weakly ordered
atomic operations

• Many languages (Java, C++0x, C1x, OpenMP*) allow atomic
operations with weaker ordering.
– Java lazySet()
– C++0x/C1x memory_order_relaxed, etc.
– OpenMP* #pragma omp atomic
– UPC relaxed

• Don’t contribute to data races.
• Simplest case: Contribute no happens-before relationships

or other visibility constraints.
– Other variants also suffice.

• Load can see store that happens before it, or a racing store.
• Data-race-free programs no longer sequentially consistent.

* We assume OpenMP 3.1 atomics. The OpenMP 3.0 story is complicated …

Weakly ordered atomic operations

atomic x = 1;
l.lock();
atomic x = 2;
l.unlock();
atomic x = 3;
atomic x = 4; l.lock();

atomic r1 = x;
l.unlock();

Weakly ordered atomics example

“Dekker’s example”:

Everything initially zero:

Thread 1 Thread 2

atomic x = 1; atomic y = 1;

atomic r1 = y; atomic r2 = x;

• Allow r1 = r2 = 0!

• Not Java volatile or C++0x default
atomic!

Dekker’s example with locks, original
semantics

“Dekker’s example”:

Everything initially zero:

Thread 1 Thread 2

l1.lock(); l2.lock();

atomic x = 1; atomic y = 1;

l1.unlock(); l2.unlock();

atomic r1 = y; atomic r2 = x;

• No synchronizes-with relationships!

• Locks don’t matter: r1 = r2 = 0 still allowed.

“Dekker’s example”:
Everything initially zero:

Thread 1 Thread 2

l1.lock(); l2.lock();
atomic x = 1; atomic y = 1;
l1.unlock(); l2.unlock();
atomic r1 = y; atomic r2 = x;

• Initialization still happens before both stores.
• Assume implied flush in thread 1 l1.unlock() is first in flush

order. (Other case is symmetric.)
• Corresponding x = 1 store happens before load in other thread.
• Hides initialization from r2 = x load. Must see 1.
• r1 = r2 = 0 disallowed.

Dekker’s example with locks, fence-
based semantics

Roach-motel semantics:

• Transformation still allowed w. original semantics.
• Racing accesses may see state inconsistent with

sequentially consistent interleaving semantics.
• Disallowed by implicit flush in unlock.

l.lock();

atomic x = 1;

l.unlock();

atomic r1 = y;

l.lock();

atomic r1 = y;

atomic x = 1;

l.unlock();

Consequences

• Weakly-ordered atomics distinguish traditional
happens-before and fence-based semantics.

• Fence-based semantics  potentially much more
expensive lock/unlock.
– Rarely optimizable.

• Incorrect OpenMP 3.0 implementations can support
much faster uncontended locks.
– And probably nobody will notice.

• Sequentially consistent atomics don’t expose issue:
– Slows down atomics.
– Potentially less than lock/unlock slowdown.
– May be a faster way to implement OpenMP 3.0 spec!

How does this impact real
implementations?

• We suspect proprietary implementations ignore
the rules where it matters.
– Which is probably what users want!

• Inspection of gcc4.4 showed:
– OpenMP critical section entry on PowerPC did not

include full fence.
– The corresponding Itanium code didn’t guarantee

proper lock semantics (since fixed).
– Critical section exit code had full fences.
– This all appeared to be fairly accidental.

We really need to make this less confusing!

Implications for OpenMP specification

• This was discussed in OpenMP ARB meetings,
resulting in:

– Various memory model clarifications in the
OpenMP 3.1 draft.

– Informal wording in the 3.1 draft allowing roach-
motel reordering.

– Ongoing discussion about a revised memory
model, and sequentially consistent atomic
operations in 4.0.

Implications for UPC

• Much more precise memory model in the
spec, but:

– strict accesses have flush-like semantics.

– “A null strict access is implied before a call to
upc_unlock()”

– relaxed shared accesses are essentially weakly
ordered atomic accesses.

 Same problem!

Questions?

Backup slides

OpenMP 3.0 atomics example

• Only RMW operations are allowed

• Initially x = y = 1;

x *= 0; y++;

l.lock(); l.lock();

y *= 0; x++;

• after join, can x = 1 and x = 2?

• I believe isync-based PowerPC lock() allows this.

• Dekker’s with these primitives is an Itanium
example.

A performance measurement

#include <stdlib.h>

int main()
{

int i;
for (i = 0; i < 100*1000*1000; ++i) {

free(malloc(8));
}
return 0;

}

> gcc -O2 –lpthread malloc.c
> time ./a.out
3.965u 0.001s 0:03.96 100.0% 0+0k 0+0io 0pf+0w

Intel Xeon E7330@2.4GHz
(Core2 / Tigerton)
gcc 4.1.2
RHEL 5.1

Another one

#include <stdio.h>
#include <pthread.h>

void * child_func(void * arg)
{
}

int main()
{

pthread_t t;
int code;

if ((code = pthread_create(&t, 0, child_func, 0)) != 0) {
printf("pthread creation failed %u\n", code);

}
if ((code = pthread_join(t, 0)) != 0) {

printf("pthread join failed %u\n", code);
}

return 0;
}

> gcc -O2 –lpthread create_join.c
> time ./a.out
0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io 0pf+0w

Both combined

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * child_func(void * arg)
{
}

int main()
{
int i;
pthread_t t;
int code;

if ((code = pthread_create(&t, 0, child_func, 0)) != 0) {
printf("pthread creation failed %u\n", code);

}
if ((code = pthread_join(t, 0)) != 0) {

printf("pthread join failed %u\n", code);
}
for (i = 0; i < 100*1000*1000; ++i) {
free(malloc(8));

}
return 0;

}

> gcc -O2 –lpthread both.c
> time ./a.out
9.880u 0.000s 0:09.88 100.0% 0+0k 0+0io 0pf+0w

Where is the time spent:

10%:
0x3b9a47213f <_int_free+1023>: lock andl $0xfffffffffffffffe,0x4(%r15)

9%:
0x3b9a472172 <_int_free+1074>: lock cmpxchg %rbx,(%rcx)

10%:
0x3b9a472a80 <_int_malloc+128>: lock cmpxchg %rdx,0x8(%rsi)

11%:
0x3b9a474e16 <malloc+86>: lock cmpxchg %edx,(%rbx)

40% of time in fence + RMW instructions

