
© Copyright 2011 Hewlett-Packard Development Company, L.P.

How to Miscompile Programs with

“Benign” Data Races

Hans-J. Boehm

Date: 5/26/2011

© Copyright 2011 Hewlett-Packard Development Company, L.P.

09/08/2010
2

Data Races

Two memory accesses conflict if they
• access the same memory location, e.g. variable
• at least one access is a store

A program has a data race if two data accesses
• conflict, and
• can occur simultaneously in a sequentially consistent execution.

A program data-race-free (on a particular input) if no
sequentially consistent execution results in a data race.

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Ada 83

[ANSI-STD-1815A-1983, 9.11] For the actions performed by a program that uses shared

variables, the following assumptions can always be made:

• If between two synchronization points in a task, this task reads a shared variable

whose type is a scalar or access type, then the variable is not updated by any other

task at any time between these two points.

• If between two synchronization points in a task, this task updates a shared variable

whose task type is a scalar or access type, then the variable is neither read nor

updated by any other task at any time between these two points.

The execution of the program is erroneous if any of these assumptions is violated.

3

Data races are errors!

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Posix Threads Specification

[IEEE 1003.1-2008, Base Definitions 4.11] Applications shall ensure that access to any

memory location by more than one thread of control (threads or processes) is

restricted such that no thread of control can read or modify a memory location while

another thread of control may be modifying it.

4

Data races are errors!

© Copyright 2011 Hewlett-Packard Development Company, L.P.

C++ 2011 / C1x

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a

data race if it contains two conflicting actions in different threads, at least one of

which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

5

Data races are errors!

(and you get atomic operations to avoid them)

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Java

6

Data races are not errors.

But we don’t know what they really mean.

© Copyright 2011 Hewlett-Packard Development Company, L.P.

November 2010 CACM Technical Perspective

“Data races are evil with no exceptions.”

- Sarita Adve, technical perspective for Goldilocks and FastTrack papers on

data race detection.

7

© Copyright 2011 Hewlett-Packard Development Company, L.P.

On the other hand:

• Narayanasamy et al, “Automatically Classifying Benign and Harmful Data

Races Using Replay Analysis”, PLDI 2007.

• Flanagan and Freund, “Adversarial memory for detecting destructive races”,

PLDI 2010.

• Several other recent papers make similar distinctions.

• 4500 Google results for “benign data race”.

8

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Our Claim:

Data races in Ada, C, or C++ code:

• Are specified to be incorrect.

• May start failing the next time you recompile the program.

– No matter what type of data race it was.

– Or how benign you thought it was.

Data races at the machine level

• Are OK.

• Though mainly because ISAs don’t distinguish synchronization accesses.

Data races in Java?

9

© Copyright 2011 Hewlett-Packard Development Company, L.P.

How a data race can cause things to go wrong

Paper considers each kind of “benign” data race in

Narayanasamy et al, “Automatically Classifying Benign and Harmful Data Races

Using Replay Analysis”, PLDI 2007.

We instead give a general overview of what can go wrong:

• Operations may become visible out of order.

• Write may fail to become visible.

• Read may see a value not written.

• May execute a path that corresponds to no possible read value.

• Even redundant writes of the same value may fail.

10

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Write may fail to become visible

Thread 1 Thread 2

while (!flag) {} flag = true;

printf(“1\n”); printf(“2\n”);

If load of flag is moved out of loop, a likely outcome:

Thread 2 will print 2.

Thread 1 will loop forever.

11

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Operations may become visible out of order

Thread 1 Thread 2

data = 42; while (!flag) {}

done = true; assert (data == 42);

Writes to data and done may be reordered by compiler or

hardware.

Unobservable without data races.

12

© Copyright 2011 Hewlett-Packard Development Company, L.P.

8/3/2011
13

Racing read may see value not written

Thread 1 Thread 2

x = 300; x = 100;

If memory is accessed a byte at a time (or x is misaligned),
this may be executed as:

x_high = 0;

x_high = 1; // x = 256

x_low = 44; // x = 300;

x_low = 100; // x = 356;

© Copyright 2011 Hewlett-Packard Development Company, L.P.

14 3 August 2011

Execution path may correspond to no read value.

Assume switch statement compiled as

branch table.

May assume x is in range.

Asynchronous change to x causes wild

branch.

• Not just wrong value.

Paper has a completely different

example.

unsigned x;

If (x < 3) {

… // async x change

switch(x) {

case 0: …

case 1: …

case 2: …

}

}

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Even redundant writes can be problematic!

Thread 1 Thread 2

x = 17; x = 17;

• Is x guaranteed to be 17 when both threads finish?

–Hard to see why not.

–But future optimizers may break this. (Next slides.)

–Probably not in all contexts.

But dangerous contexts are hard to characterize.

15

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Self-assignments

Self-assignments:

• Adding x = x; self-assignment in sequential code is OK.

• Normally not OK in multi-threaded code:

r1 = x;

x = 17;

x = r1;

• Introduces data race; hides concurrent assignment to x.

• OK in multi-threaded code next to a store to x:

x = 17;  x = 17; x = x;

• Cannot introduce data race or hide assignment!

–Original program would have had to already contain race!

16

© Copyright 2011 Hewlett-Packard Development Company, L.P.

How to miscompile redundant writes

Thread 1 Thread 2

x = 17; x = 17;

17

Thread 1 Thread 2

r1 = x;

x = 17;

x = r1;

r2 = x;

x = 17;

x = r2;

x is set to 17 (twice!) x retains its original value!

© Copyright 2011 Hewlett-Packard Development Company, L.P.

But why self-assignments? (1)

struct { char a; char b; char c; char d;} x;

x.a = 1; x.b = 1; x.d = 1;

r1 = x.c; x = 0x01010001; x.c = r1;

18

© Copyright 2011 Hewlett-Packard Development Company, L.P.

19 3 August 2011

Why self-assignments? (2)

int count; // global, possibly shared
…
for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++count;

int count; // global, possibly shared
…
reg = count;
for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++reg;
count = reg; // may be spurious count = count;

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Conclusions

Even the most seemingly benign data races can easily be miscompiled.

• Clearer programming language memory models  Compilers are more

likely to leverage data-race-freedom assumptions.

• Aggressive use of data-race-freedom assumption  More interesting ways

to break code violating the assumption.

• Most of the resulting breakage is hard to test for.

20

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Thank you

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Subtitle placeholder goes here

First line of copy goes here.

• First level bullet goes here and can be quite long

–Second level bullet goes here. Try to keep bullet lists simple

o Third level bullet goes here. Use no more than you need

to explain your point

22

