
Transactional Memory Should be 
an Implementation Technique, 
Not a Programming Interface

Hans-J. Boehm



Why Transactional Memory?

• A mechanism for providing failure 
atomicity?

– Largely subject of last talk. Part of answer?
– Interacts with parallelism, but
– Just as interesting without parallelism.
– Hard for reasons that have nothing to do 

with parallelism. (next slide)
– For the purposes of this talk, it’s

a) Not central.
b) Too hard for us.



Why failure atomicity is hard:

atomic {

x.foo();

if (…) abort();

}

foo() {

launch_missile_now();

}

How do you prevent this?

• Dynamically?

• Problematic

• Type/effect systems?

• Too complex?

Thanks to Intel authors of 
last paper & Tatiana 
Shpeisman.



Why TM? (Second, final try)

• A simpler synchronization mechanism 
than locks.

• (There are other possible, usually less 
ambitious, answers, but they’re not the 
subject of this talk.)



But threads with locks already have 
(superficially?) simple semantics

• Java 1.5+ and C++0x both support “sequential consistency for data-
race-free programs”.*

• Multithreaded execution can be viewed as interleaving:
– Canonical example (everything initially zero):

Thread 1 Thread 2
x = 1; y = 1;
r1 = y; r2 = x;

– Might be executed as:
x = 1; y = 1; r2 = x; r1 = y; or
x = 1; y = 1; r1 = y; r2 = x; 

– Provided there are no data races:
• No such interleaving has conflicting adjacent non-atomic/volatile operations 

from different threads.
– No lock(l) can appear in the interleaving unless prior calls from other 

threads balance.

*Provided certain esoteric library calls are avoided.



27 April 2009

Handling locks

Thread 1 Thread 2
lock(l); lock(l);

r1 = x; r2 = x;
x = r1+1; x = r2+1;
unlock(l); unlock(l);

– can only be executed as
lock(l); r1 = x; x = r1+1; unlock(l); lock(l); 
r2 = x; x = r2+1; unlock(l);

or

lock(l); r2 = x; x = r2+1; unlock(l); lock(l); 
r1 = x; x = r1+1; unlock(l); 

since second lock(l) must follow first unlock(l)



So what’s complicated about 
locks?

• Code needs to be designed to avoid deadlocks.
• Usually locks are acquired in a fixed order.
• This complicates interfaces.
• And it’s basically incompatible with some 

common programming practices, e.g.
– x = y; in C++ may be implemented 

as a reference counted assignment.
– May synchronously deallocate a large 

opaque data structure previously 
referenced by x, acquiring many 
unknown locks.

– Avoid assignments in critical sections.

x = y;



Obvious solution:

• Only use one (reentrant) lock.
• Semantics are even (slightly) simpler.
• Lock-based deadlocks are impossible.
• No issues with:

– Strong vs. weak isolation
– Publication and privatization safety
– Irreversible IO actions
– Interactions with existing lock-based code
– …



So what are we missing?

• Nice syntax
– atomic { } vs. synchronized(the_lock) { }
– View atomic {} as abbreviation!

• Scalability
– Fixable with clever implementations (?)
– Some TM systems (e.g. Intel’s) already provide 

“Single Global Lock” semantics.
– Semantically we want a single global lock.
– TM is potentially a great implementation technique.
– But not the only one.



What about thread communication 
and retry?

• Inherently doesn’t compose correctly:
f() { // in library

do something;

if (error) while (msgs to log) {

atomic {

try to add msg to buffer;

if (buffer was full)

retry;

} } }

main() { atomic { f(); }}

• Retrying at inner level violates isolation.
• Retrying at outer level doesn’t work.



Solution to retry problem

• retry

• Use locks and condition variables!
• Needed for legacy code anyway.

• Locks provide the right kind of partial isolation
– Transactions don’t.

• Simpler than open nesting. (No undo actions.)
• Can usually be hidden in libraries?

• For examples like this, TM-like implementations 
still work for most calls.



What about guaranteed parallel 
progress?

atomic {

while (true);

}

atomic { }

print “Hello”;

Thread 1: Thread 2:

• Conventional TM view (?): “Hello” is always printed.

• With atomic as syntactic sugar for lock: “Hello” not always printed.

• According to JLS, with atomic removed: “Hello” not always printed!

• Fully portable code can’t tell a lock-based implementation from a roll-
back based one, without nested synchronization (?)

• Does real code care?

(Similar to Luchangco example.)



Can distinguish with nested 
synchronization!

• In our view, no data race on x.
• Hard to handle in a purely roll-back-based 

implementation anyway.

atomic {

v = 1;

x = 1;

}

Thread 1:

while (!v);

atomic { }

x = 2;

v is declared volatile/atomic

Thread 2:



What about faster TMs with weaker 
semantics?

• Either destroys simple interleaving-based 
view of threads, and/or

• Adds unintuitive, unproven restrictions, 
e.g.
– No movement of code into critical sections.
– Need separate shared & private versions of 

data types.

• Parallel programming is hard enough!
– Let’s not make it harder!



Conclusions

• Atomic sections defined as a simple short-
hand for lock acquisition give us:
– All the synchronization benefits of TM.
– Simple semantics.
– Support for roll-back based implementations.

• Open questions:
– What can we do about performance?
– Is failure atomicity practically feasible and 

worth the added complexity?



Questions?


